9 resultados para Coelho

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have observed that when cercariae penetrate the skin of mice, there is influx into their tissues of Lucifer Yellow and certain labelled molecules of up to 20 kDa molecular weight. This observation was made using a variety of fluorescent membrane-impermeant compounds injected into the skin before the application of cercariae. This unexpected phenomenon was investigated further by transforming cercariae in vitro in the presence of the membrane-impermeant compounds and examining the distribution by microscopy. In schistosomula derived from this procedure, the nephridiopore and surface membrane were labelled while the pre- and post-acetabular glands were not labelled. The region associated with the oesophagus within the pharyngeal muscle clearly contained the fluorescent molecules, as did the region adjacent to the excretory tubules and the germinal mass. We used cercariae stained with carmine to aid identification of regions labelled with Lucifer Yellow. Although the mechanism of this influx is unclear, the observation is significant. From it, we can suggest an hypothesis that, during skin penetration, exposure of internal tissues of the parasite to external macromolecules represents a novel host-parasite interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related(1). These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae(2-5), closely related to the kelps(6,7) (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic(2) approaches to explore these and other(4,5) aspects of brown algal biology further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The filamentous brown alga Ectocarpus has a complex life cycle, involving alternation between independent and morphologically distinct sporophyte and gametophyte generations. In addition to this basic haploid–diploid life cycle, gametes can germinate parthenogenetically to produce parthenosporophytes. This article addresses the question of how parthenosporophytes, which are derived from a haploid progenitor cell, are able to produce meiospores in unilocular sporangia, a process that normally involves a reductive meiotic division.
We used flow cytometry, multiphoton imaging, culture studies and a bioinformatics survey of the recently sequenced Ectocarpus genome to describe its life cycle under laboratory conditions and the nuclear DNA changes which accompany key developmental transitions.
Endoreduplication occurs during the first cell cycle in about one-third of parthenosporophytes. The production of meiospores by these diploid parthenosporophytes involves a meiotic division similar to that observed in zygote-derived sporophytes. By contrast, meiospore production in parthenosporophytes that fail to endoreduplicate occurs via a nonreductive apomeiotic event.
Our results highlight Ectocarpus’s reproductive and developmental plasticity and are consistent with previous work showing that its life cycle transitions are controlled by genetic mechanisms and are independent of ploidy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent announcement of the first genome sequence of a brown macroalga, the filamentous Ectocarpus, has been accompanied by a number of companion papers in New Phytologist. In a paper which contributes to this special issue, we classified the core cell cycle components of Ectocarpus, comparing them to the previously studied cell cycle components of diatoms. We then carried out fluorescence microscopy experiments to show that the Ectocarpus cell cycle could be deregulated during early development to give endopolyploid adults. We discuss here how our findings complement recent studies on endopolyploidy in plant and algal systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the impact on confinement and power load of the high-shape 2.5 MA ELMy H-mode scenario at JET of a change from all carbon plasma-facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared with their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease in the pedestal confinement but is partially recovered with the injection of nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland cement. These binders consist of a class of inorganic polymer formed mainly by the reaction between an alkaline solution and an aluminosilicate source. Precursor materials for this reaction can be found in secondary material streams from different industrial sectors, from energy to agro-alimentary. However, the suitability of these materials in developing the polymerisation reaction must be assessed through a detailed chemical and physical characterisation, ensuring the availability of required chemical species in the appropriate quantity and physical state. Furthermore, the binder composition needs to be defined in terms of proper alkali activation dosages, water content in the mix, and curing conditions. The mix design must satisfy mechanical requirements and compliance to desired engineering properties (workability, setting time) for ensuring the suitability of the binder in replacing Portland cement in concrete applications. This paper offers a structured approach for the development of secondary material-based binders, from their identification to mix design and production procedure development. Essential features of precursor material can be determined through chemical and physical characterisation methods and advanced microscope techniques. Important mixing parameters and binder properties requirements are examined and some examples of developed binders are reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article documents the public availability of (i) microbiomes in diet and gut of larvae from the dipteran Dilophus febrilis using massive parallel sequencing, (ii) SNP and SSR discovery and characterization in the transcriptome of the Atlantic mackerel (Scomber scombrus, L) and (iii) assembled transcriptome for an endangered, endemic Iberian cyprinid fish (Squalius pyrenaicus).